

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

PAZ LABORATORIOS S.R.L Calle Oscar Benavides 602 Yanahuara, Arequipa 04017 PERU Erwin Edgardo Paz Gonzales Phone: +51 953 766 470

CALIBRATION

Valid To: November 30, 2026

Certificate Number: 6829.01

In recognition of the successful completion of the A2LA evaluation process (including an assessment of the organization's compliance with R205 - A2LA's Calibration Program Requirements), accreditation is granted to this laboratory to perform the following calibrations:¹

I. Chemical

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Gas Analyzer ³ – Concentration:			
CO in N ₂	Carbon Monoxide (CO): (2 to 10) µmol/mol	1.7x10 ⁻⁰² (c) + 2.2x10 ⁻⁰² μmol/mol	CEM QU-006 Ed. 0 by dynamic dilution. Where (c) is gas concentration in unit of µmol/mol, or nmol/mol.
NO ₂ in N ₂	Nitric Dioxide (NO ₂): (50 to 250) nmol/mol (250 to 500) nmol/mol	1.1x10 ⁻⁰² (c) + 4.7 nmol/mol 1.7x10 ⁻⁰² (c) + 3.3 nmol/mol	
NO in N ₂	Nitric Monoxide (NO): (50 to 250) nmol/mol) (250 to 500) nmol/mol	1.1x10 ⁻⁰² (c) + 4.7 nmol/mol 1.7x10 ⁻⁰² (c) + 3.5 nmol/mol	
H ₂ S in N ₂	Hydrogen Sulfide (H ₂ S): (25 to 500) nmol/mol	3.0x10 ⁻⁰² (c) + 3.3 nmol/mol	

(A2LA Cert. No 6829.01) 12/19/2024

Page 1 of 4

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Parameter/Equipment	Range	CMC ^{2,4} (±)	Comments
Gas Analyzer ³ – Concentration: (cont) SO ₂ in N ₂	Sulfur Dioxide (SO ₂): (25 to 250) nmol/mol (250 to 500) nmol/mol	2.7x10 ⁻⁰² (c) + 8.0x10 ⁻⁰¹ nmol/mol 2.7x10 ⁻⁰² (c) + 1.5 nmol/mol	CEM QU-006 Ed. 0 by dynamic dilution. Where (c) is gas concentration in unit of µmol/mol, or nmol/mol.
Gas Analyzer ³ Ozone Concentration	Ozone (O ₃): (50 to 500) nmol/mol	7.7x10 ⁻⁰³ (c) + 9.3x10 ⁻⁰¹ nmol/mol	Standard ultraviolet photometer Where (c) is gas concentration.
Gas Analyzer – Mercury Concentration	(100 to 20 000) ng/m ³	$(0.024(c) + 0.52) \text{ ng/m}^3$	Cold-vapor mercury technique using gravimetric dilutions from a mercury CRM. Where (c) is mercury concentration in ng/m ³
Turbidimeter	10 NTU 20 NTU 100 NTU 800 NTU	0.090 NTU 0.16 NTU 0.86 NTU 5.2 NTU	Comparison to stabilized Formazin turbidity standard
Dissolved Oxygen – Measuring Devices	(5.2 to 9.4) mg/L	(0.0039(c) – 0.0035) mg/L	Comparison to oxygen saturated water at controlled temperature using Benson-Krausen equation. Where (c) is concentration in mg/L

A Page 2 of 4

II. Fluid Quantities

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Volume Flow Rate – Air Flowmeters and Personal Air Sampling Pumps with meter and similar	(15 to 100) cm ³ /min	1.1 cm ³ /min	CEM ME-009 by comparison with reference flowmeter.
	(100 to 10 000) cm ³ /min	(0.0062Q + 2.6) cm ³ /min	Where (Q) is volume flow rate in cm ³ /min.
	(10 000 to 19 000) cm ³ /min	150 cm ³ /min	Air flow reference conditions: temperature at 0 °C and absolute pressure at 1013.25 mbar.
Volume Flow Rate – High Volume Air Samplers	(1.1 to 1.3) m ³ /min	2.6 % of reading	Indirect calibration using two differential pressure digital gauges

III. Mechanical

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Absolute Pressure – Barometers	(550 to 1100) hPa	0.74 hPa	INACAL PC-024:2018

IV. Thermodynamics

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Temperature –	(-30 to 5) °C	0.060 °C	SNM-INDECOPI
Digital Thermometers	(5 to 80) °C	0.045 °C	PC-017, 2nd ed. 2012

Ann Page 3 of 4

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Temperature Controlled Chambers ³	(-30 to 80) °C	0.3 °C	S&M-INDECOPI PC-018, 2nd ed. 2009
Temperature – Liquid Baths	(-30 to 80) °C	0.4 °C	S&M-INDECOPI PC-019, 1st ed. 2009
Temperature –	(12 to 40) °C	0.55 °C	INACAL PC-026: 2019 Thermo-hygrometers
Relative Humidity –	(15 to 80) % rh	0.0062x + 1.5 % rh	INACAL PC-026: 2019 Thermo-hygrometers Where x is Relative Humidity in % rh

¹This laboratory offers commercial calibration service.

- ³ Field calibration service is available for this calibration. Please note the actual measurement uncertainties achievable on a customer's site can normally be expected to be larger than the CMC found on the A2LA Scope. Allowance must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the actual uncertainty introduced by the item being calibrated, (e.g. resolution) must also be considered and this, on its own, could result in the actual measurement uncertainty achievable on a customer's site being larger than the CMC.
- ⁴ The type of instrument or material being calibrated is defined by the parameter. This indicates the laboratory is capable of calibrating instruments that measure or generate the values in the ranges indicated for the listed measurement parameter.

lu

²Calibration and Measurement Capability Uncertainty (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. CMCs represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k =2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC Uncertainty due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.