

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

PAZ LABORATORIOS S.R.L Calle Oscar Benavides 602 Yanahuara, Arequipa 04017 PERU Erwin Edgardo Paz Gonzales Phone: +51 953 766 470

CALIBRATION

Valid To: December 31, 2024

Certificate Number: 6829.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations:1

I. Chemical

Parameter/Equipment	Range	$\mathrm{CMC}^{2}(\pm)$	Comments
Gas Analyzer ³ – Concentration:			
CO in N ₂	Carbon Monoxide (CO): (2 to 10) µmol/mol	$\begin{array}{l}(-1.6\cdot 10^{-4}(c)^4+3.7\cdot 10^{-3}(c)^3-\\3\cdot 10^{-2}(c)^2+1.1\cdot 10^{-1}(c)-\\7.1x10^{-2})\ \mu\text{mol/mol}\end{array}$	CEM QU-006 Ed. 0 by dynamic dilution.
NO ₂ in N ₂	Nitric Dioxide (NO ₂): (50 to 250) nmol/mol	$(-2.4 \cdot 10^{-9}(c)^4 + 1.4 \cdot 10^{-6}(c)^3 - 2.4 \cdot 10^{-4}(c)^2 + 2.2 \cdot 10^{-2}(c) + 4.5)$ nmol/mol	Where (c) is gas concentration in unit of µmol/mol, or nmol/mol
	(250 to 500) nmol/mol	$(-1.7 \cdot 10^{-9} (c)^4 + 2.8 \cdot 10^{-6} (c)^3 - 1.7 \cdot 10^{-3} (c)^2 + 4.3 \cdot 10^{-1} (c) - 35)$ nmol/mol	
NO in N ₂	Nitric Monoxide (NO): (50 to 250) nmol/mol)	$(-2.3 \cdot 10^{-9}(c)^4 + 1.4 \cdot 10^{-6}(c)^3 - 2.4 \cdot 10^{-4}(c)^2 + 2.3 \cdot 10^{-2}(c) + 4.5)$ nmol/mol	
	(250 to 500) nmol/mol	$(4.2 \cdot 10^{-9} (c)^4 - 6.8 \cdot 10^{-6} (c)^3 + 4.1 \cdot 10^{-3} (c)^2 - 1.1 (c) + 110)$ nmol/mol	

(A2LA Cert. No 6829.01) Revised 11/25/2024

Page 1 of 4

Parameter/Equipment	Range	CMC ^{2,4} (±)	Comments
Gas Analyzer ³ – Concentration: (cont)			
H_2S in N_2	Hydrogen Sulfide (H ₂ S): (25 to 500) nmol/mol	$(1.3 \cdot 10^{-10} (c)^4 - 1.6 \cdot 10^{-7} (c)^3 + 8.6 \cdot 10^{-5} (c)^2 + 9.7 \cdot 10^{-3} (c) + 3.8) \text{ nmol/mol}$	CEM QU-006 Ed. 0 by dynamic dilution.
SO ₂ in N ₂	Sulfur Dioxide (SO ₂): (25 to 250) nmol/mol	$(-1.7 \cdot 10^{-9} (c)^4 + 9.3 \cdot 10^{-7} (c)^3 - 1.4 \cdot 10^{-4} (c)^2 + 3.1 \cdot 10^{-2} (c) + 7.5 \cdot 10^{-1}) \text{ nmol/mol}$	Where (c) is gas concentration in unit of µmol/mol, or nmol/mol.
	(250 to 500) nmol/mol	$(-1.4 \cdot 10^{-9} (c)^4 + 2.3 \cdot 10^{-6} (c)^3 - 1.4 \cdot 10^{-3} (c)^2 + 3.8 \cdot 10^{-1} (c) - 31)$ nmol/mol	
Gas Analyzer ³	()))	$(1410-6(-)^2 + 5810-2(-))$	Standard ultraviolet photometer
Ozone Concentration	Ozone (O ₃): (50 to 500) nmol/mol	$(-1.4 \cdot 10^{\circ} (c)^{2} + 5.8 \cdot 10^{\circ} (c)^{2} + 7.2 \cdot 10^{-1})$ nmol/mol	Where (c) is gas concentration.
Gas Analyzer – Mercury Concentration	(100 to 20 000) ng/m ³	(0.020x + 2.5) ng/m ³	Cold-vapor mercury technique using gravimetric dilutions from a mercury CRM. Where x is mercury
			concentration in ng/m ³
Turbidimeter	(10 to 1000) NTU	(0.051x + 0.052) NTU	Comparison to stabilized Formazin turbidity standard
			Where x is turbidity in NTU
Dissolved Oxygen – Measuring Devices	(5.2 to 9.4) mg/L	0.02 mg/L	Comparison to oxygen saturated water at controlled temperature using Benson-Krausen equation.

Ann Page 2 of 4

II. Fluid Quantities

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Volume Flow Rate – Air Flowmeters	(5 to 20) cm ³ /min	1.2 cm ³ /min	CEM ME-009 by comparison with reference flowmeter.
	(20 to 100) cm ³ /min	1.3 cm ³ /min	
	(100 to 500) cm ³ /min	1.9 cm ³ /min	Where (Q) is volume flow rate in cm ³ /min.
	(500 to 1000) cm ³ /min	3.5 cm ³ /min	A
	(1000 to 10000) cm ³ /min	$0.003Q + 0.68 \text{ cm}^3/\text{min}$	Air flow reference conditions:
	(10000 to 20000) cm ³ /min	62 cm ³ /min	and absolute pressure at 1013.25 mbar.
Volume Flow Rate – Personal Sampling Pumps	(5 to 20) cm ³ /min	0.14 cm ³ /min	CEM ME-009 by comparison with
	(20 to 100) cm ³ /min	0.32 cm ³ /min	reference flow meter.
	(100 to 500) cm ³ /min	2.4 cm ³ /min	Air flow reference conditions:
	(500 to 1000) cm ³ /min	3.5 cm ³ /min	temperature at 0 °C and absolute pressure
	(1000 to 10000) cm ³ /min	0.6 % of reading	at 1013.25 mbar.
	(10000 to 20000) cm ³ /min	61 cm ³ /min	
Volume Flow Rate – High Volume Air Samplers	(1.1 to 1.3) m ³ /min	2.6 % of reading	Indirect calibration using two differential pressure digital gauges

III. Mechanical

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Absolute Pressure – Barometers	(550 to 1100) hPa	0.67 hPa	INACAL PC-024:2018

Ann Page 3 of 4

IV. Thermodynamics

Parameter/Equipment	Range	$CMC^{2}(\pm)$	Comments
Temperature – Digital Thermometers	(-30 to 80) °C	0.0064 % rdg + 0.090 °C (0.087 °C to 0.094 °C)	SNM-INDECOPI PC-017, 2nd ed. 2012
Temperature Controlled Chambers ³	(-30 to 100) °C	0.2 °C	S&M-INDECOPI PC-018, 2nd ed. 2009
Temperature – Liquid Baths	(-30 to 100) °C	0.2 °C	S&M-INDECOPI PC-019, 1st ed. 2009
Temperature – Thermohygrometers	(12 to 40) °C	0.55 °C	INACAL PC-026: 2019
Relative Humidity – Thermohygrometers	(15 to 40) % rh (40 to 80) % rh	2.9 % rh – 0.016RH 1.9 % rh + 0.0075RH	INACAL PC-026: 2019

¹This laboratory offers commercial calibration service.

²Calibration and Measurement Capability Uncertainty (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. CMCs represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k =2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC Uncertainty due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

³ Field calibration service is available for this calibration. Please note the actual measurement uncertainties achievable on a customer's site can normally be expected to be larger than the CMC found on the A2LA Scope. Allowance must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the actual uncertainty introduced by the item being calibrated, (e.g. resolution) must also be considered and this, on its own, could result in the actual measurement uncertainty achievable on a customer's site being larger than the CMC.

⁴ The type of instrument or material being calibrated is defined by the parameter. This indicates the laboratory is capable of calibrating instruments that measure or generate the values in the ranges indicated for the listed measurement parameter.

An